World Population - This Picture shows Overpopulation 1977

60 rows of people around the earth

Which Picture is accurate? The one above Or the one below?

All the people in the world times $\mathbf{2}$ could fit in a Hawaii Island area.

14 billion people in a seated crowd like an auditorium crowd with 8 sq.ft. each could fit in an area the size of the island of Hawii which is $4,028 \mathrm{sq}$. miles of land area. IS THIS TRUE?

When I was in high school I remember being taught some thought-pictures of World Population with a very strong insinuation that the world was overloaded. So I am giving you this true-to-scale picture. If you want to you can imagine what the world population would appear like in 10 rows times 6 stretched across this map and on around the rest of the world (not shown). Rows each 3 ft wide $10 \times 6=60$ rows $\times 3 \mathrm{ft}=$ 180 ft wide. But to scale that would be a line about $1000^{\text {th }}$ of the distance across the island of Hawaii on the map above (Fig.1). It would be too small to see. So it is much easier to see scale in one crowd on an island. That Island is about 63.5 miles across. See False picture (Fig.2) below.

I am not suggesting that I think that all the people in the world could live in Hawaii.
This is just a thought picture comparing world mass to $\mathbf{2 x}$ human population.
This picture of people (Fig.2) is not to same scale as the world. The red lettering is comments I added. What I was taught in my high-school text book. The facts may be right but the picture is not-to-scale.

Fig. 260 rows of people around the earth

This page screems overpopulation
WORLD/People of the World

If you put the people to the same scale as the world then you would only see them as a small dot all taking up no more space than one island of Hawaii

The Population of the World

that true picture is not the picture this puplication wants to present
The population of the world in 1977 totaled about $4,105,000,000$, and it continues to rise rapidly. The yearly rate of increase during the 1970's has been about 2 per cent. At that rate, the population of the world will reach about $6 \frac{1}{2}$ billion by the year 2000 .

If all the people of the world were distributed evenly, there would be about 73 persons for every square mile (28 persons for every square kilometer) of land. But; of course, people are not distributed evenly. The population density (the average number of persons who live in a given area) varies greatly. No one lives in most of Antarctica or in parts of some deserts. But there are more than 1,000 persons per square mile (386 persons per square kilometer) living in parts of China, Egypt, India, Indonesia, and other heavily populated countries. Large cities have the highest population densities. Chicago, for example, averages about 15,000 persons per square mile (5,790 persons per square kilometer). The most densely populated areas of the world are in Europe, and in eastern and southern Asia. North America has clusters of dense populations in some northeastern and midwestern areas, and along the Pacific coast. Africa, Australia, and South America have areas of dense populations near the coasts. The interiors of these three continents are only thinly settled.

The important changes and shifts of the world population throughout history are described in the article on Population. See also the articles on the various countries, states, and provinces for population details.

This chart shows how the world's population has grown since 2000 B.C. The increase was slow until A.D. 1, but by 1000 the population had more than doubled. It doubled again between 1650 and 1850 . Between 1850 and 1970, the population tripled. At the present rate of increase, the world's population will be about

SEE map (Fig.1) a true to scale picture on first page.
Here are the figures: $1 \mathrm{sq}, \mathrm{mi} .=5,280 \mathrm{ft} . \times 5,280 \mathrm{ft} .=27,878,400 \mathrm{sq} . \mathrm{ft}$. 4,028 sq.mi. $=27,878,400$ sq.ft. $\times 4,028=112,294,195,200$ sq.ft. of Island area. $112,294,195,200$ sq.ft. $/ 8$ sq.ft. per person $=14,036,774,400$ people. or more than 14 billion people could fit in an area the size of Hawaii's largest island Hawaii. On World MAP 25 ft wide Hawaii Would be about $3 / 4 \mathrm{in}$. Across and $1000^{\text {th }}$ of that is about .00075 in (too small to draw).

